Conservative discontinuous Galerkin schemes for Boltzmann-Maxwell equations

Manaure Francisqueza,b,c, Ammar Hakimb, Jimmy Junod,b, Tess Bernarde,b, Greg Hammettb

a Dartmouth College
b MIT Plasma Science and Fusion Center
c Princeton Plasma Physics Laboratory
d University of Maryland, College Park
e University of Texas, Austin
Wish to solve the Vlasov-Maxwell system:

\[
\begin{align*}
\frac{\partial f_s}{\partial t} + \nabla \cdot \alpha f_s &= 0 & \alpha &= (v, \alpha) (E + v \times B)/m_s \\
\frac{\partial B}{\partial t} + \nabla \times E &= 0 & \nabla \cdot E &= \frac{1}{\epsilon_0} \frac{\partial \phi}{\partial t} \\
\epsilon_0 \mu_0 \frac{\partial E}{\partial t} - \nabla \times B &= -\mu_0 \mathbf{J} & \nabla \cdot B &= 0
\end{align*}
\]

Discretize with discontinuous Galerkin (DG) finite elements:

\[
\begin{align*}
M_0^s &= \int_{-\infty}^{\infty} dv \ f_s(t, x, v) \\
M_{1,i}^s &= \int_{-\infty}^{\infty} dv \ v_i f_s(t, x, v) \\
M_2^s &= \int_{-\infty}^{\infty} dv \ v^2 f_s(t, x, v)
\end{align*}
\]
Conservative DG Vlasov scheme1

Discretize phase-space with a mesh \mathcal{T} of cells $K_j \in \mathcal{T}$, $j = 1, 2, \cdots, N$.

Introduce the piecewise polynomial space $\mathcal{V}_h^p = \{v : v|_{K_j} \in \mathbf{P}_p^p, \forall K_j \in \mathcal{T}\}$ of degree p.

Typically choose Serendipity \mathbf{P}_p^p, spanned by the basis functions ψ_k, $k \in \{0, 1, \ldots, p\}$.

e.g. for 1x2v, $p = 1$

$$\psi_k \in \sqrt{\frac{3}{8}} \left\{ \frac{1}{\sqrt{3}}x, v_x, v_y, \sqrt{3}xv_x, \sqrt{3}xv_y, \sqrt{3}v_xv_y, 3xv_xv_y \right\}$$

We wish to find $f_h = f_k \psi_k$ such that:

$$\int_{K_j} d\mathbf{z} \psi_k \frac{\partial f_h}{\partial t} + \oint_{\partial K_j} dS \psi_k^- n \cdot \hat{\mathbf{F}} - \int_{K_j} d\mathbf{z} \nabla \cdot \alpha_h f_h = 0$$

Similar weak form treatments of Maxwell’s induction equations.

We wish to find $f_h = f_k \psi_k$ such that:

$$\int_{K_j} dz \psi_k \frac{\partial f_h}{\partial t} + \oint_{\partial K_j} dS \psi_k^- n \cdot \hat{F} - \int_{K_j} dz \nabla_z \cdot \alpha_h f_h = 0$$

The discrete scheme

- Conserves total number of particles.
- Has $\sum_j \frac{d}{dt} \int_{K_j} dz (-f_h \ln f_h) \geq 0$ if $f_h > 0$.
- Conserves total energy if central fluxes are used for Maxwell’s equations, and $v^2 \in V_h^p$.

1x1v test with strong initial asymmetric momentum

$m_p/m_e = 1836$
$v_{th,e} = 0.1c$
$T_p/T_e = 1$

Also wish to solve the Boltzmann equation

\[
\frac{\partial f_s}{\partial t} + \nabla_z \cdot \alpha f_s = C[f_s]
\]

In this talk…

- Conservative DG scheme for the Lenard-Bernstein operator (LBO).
- Weak equalities.
- Relaxation tests.
- Full Boltzmann-Maxwell tests.
Boltzmann equation with Lenard-Bernstein Operator (LBO)

\[\frac{df}{dt} = \frac{\partial}{\partial v_i} \nu (v_i - u_i) f + \frac{\partial}{\partial v_i \partial v_i} \nu v_{ih}^2 f \]

In this talk
\[\nu \neq \nu(v) \]

In the continuous, infinite velocity space this equation satisfies:

- Conservation of particles (\(M_0 \))
- Momentum (\(M_{1,i} \))
- Energy (\(M_2 \))

provided
\[M_0 u_i = M_{1,i} \]
\[d_v M_0 v_{ih}^2 + M_{1,i} u_i = M_2 \]

\(d_v \): number of velocity dimensions

- Monotonic increase of entropy:
\[\sum_j \frac{d}{dt} \int_{K_j} \int_{m} dz (-f_h \ln f_h) \geq 0 \]

Note the Fokker-Planck operator in Rosenbluth form:

\[\frac{df_s}{dt} = -\frac{\partial}{\partial v_i} \langle \Delta v_i \rangle_s f_s + \frac{1}{2} \frac{\partial}{\partial v_i \partial v_j} \langle \Delta v_i \Delta v_j \rangle_s f_s. \]
Can we construct a discrete DG scheme with the same conservative properties?
Consider the 1v collision term only for now:

\[
\frac{\partial f}{\partial t} = \frac{\partial}{\partial v} \nu (v-u) f + \frac{\partial^2}{\partial v^2} \nu v^2_{th} f \quad \nu \neq \nu(v)
\]

Weak form

Multiply by basis function \(\psi_k(z) \) and integrate over phase space in cell \(K_j \):

\[
\int_{K_j} dz \psi_k \frac{\partial f}{\partial t} = \int_{\partial K_j} dS \left\{ \psi_k \left[(v-u) f + v^2_{th} \frac{\partial f}{\partial v} \right] - \frac{\partial \psi_k}{\partial v} v^2_{th} f \right\} ^{v_{j+1/2}}_{v_{j-1/2}}
- \int_{K_j} dz \left[\frac{\partial \psi_k}{\partial v} (v-u) f - \frac{\partial^2 \psi_k}{\partial v^2} v^2_{th} f \right]
\]

Sum over all cells and...

- Set \(\psi_k = 1 \)
- Set \(\psi_k = v \)
- Set \(\psi_k = v^2 \)

\[
\sum_j \int_{K_j} dz \frac{\partial f}{\partial t} = \nu \sum_j \int_{\partial K_j} dS \left[(v-u) f + v^2_{th} \frac{\partial f}{\partial v} \right] ^{v_{j+1/2}}_{v_{j-1/2}} = 0
\]

\[
M_0 u - v^2_{th} f \Big|_{v_{\min}}^{v_{\max}} = M_1
\]

\[
M_1 u + v^2_{th} \left(M_0 - v f \Big|_{v_{\min}}^{v_{\max}} \right) = M_2
\]
In arbitrary dimensions $M_0, M_{1,i}$ and M_2 are conserved as long as u_i and v_{th}^2 are computed via

$$M_0 u_i - v_{th}^2 \int_{\partial \Omega_{v_i}} dS_i f \bigg|_{v_i,max}^{v_i,min} = M_{1,i}$$

$$M_{1,i} u_i + v_{th}^2 \left[M_0 - \int_{\partial \Omega_{v_i}} dS_i (v_i f) \bigg|_{v_i,max}^{v_i,min} \right] = M_2$$

But we need to compute the expansion coefficients in

$$u_i = u_{i,k} \psi_k$$

$$v_{th}^2 = v_{th,k}^2 \psi_k$$
Motivation

Given the inner product on interval I

$$\langle f, g \rangle_I = \int_I dz \ f \ g$$

weak equality is defined as

$$f \overset{\cdot}{=} g \quad \iff \quad \langle f - g, \psi_k \rangle_I = 0$$

Weak equalities define, for example, our moments:

$$M_0 \overset{\cdot}{=} \int_{-\infty}^{\infty} dv \ f(t, x, v)$$

Use weak moments in conservation proofs to arrive at

$$M_0 u - v_{\text{max}}^2 \int_{v_{\text{min}}}^{v_{\text{max}}} = M_1$$

Obtain the (weak division) problem:

$$u M_0 \overset{\cdot}{=} M_1 \quad \implies \quad u_t M_{0,m} \int_I dx \ \psi_l \psi_m \psi_k = M_{1,l} \int_I dx \ \psi_l \psi_k$$

$$(E_M \cdot M_0) \cdot u = M \cdot M_1$$

$$u = (E_M \cdot M_0)^{-1} \cdot M \cdot M_1$$

Solve this linear system to compute velocities.

M. Francisquez
To conserve $M_{1,i}$ and M_2 we must actually solve the (weak) system:

$$M_0 u_i - v_{th}^2 \int_{\partial \Omega_{v_i}} dS_i f \Bigg|_{v_{i,min}}^{v_{i,max}} \equiv M_{1,i}$$

$$M_{1,i} u_i + v_{th}^2 \left[M_0 - \int_{\partial \Omega_{v_i}} dS_i (v_i f) \Bigg|_{v_{i,min}}^{v_{i,max}} \right] \equiv M_2$$

For $p = 1$ in 3D this is a 20×20 system of equations.
Another important use of weak equalities: Recovery polynomial

Weak LBO scheme:

\[\int_{K_j} dz \psi_k \frac{\partial f}{\partial t} = \int_{\partial K_j} dS \left\{ \psi_k \left[(v - u) f + v_{th}^2 \frac{\partial f}{\partial v} \right] - \frac{\partial\psi_k}{\partial v} v_{th} f \right\} \bigg|_{v_{j+1/2}}^{v_{j-1/2}} \]

\[- \int_{K_j} dz \left[\frac{\partial\psi_k}{\partial v} (v - u) f - \frac{\partial^2\psi_k}{\partial v^2} v_{th}^2 f \right] \]

Need to evaluate derivatives of \(f \) at the cell boundary, but \(f \) is in general discontinuous there.

Consider two adjacent cells

Given the solution in two adjacent cells, \(f_L \) and \(f_R \), each an expansion of order \(p \), we can construct the recovery polynomial

\[\hat{f} = \sum_{m=0}^{2p-1} \hat{f}_m x^m \]

with

\[\hat{f} = f_L \]

\[\hat{f} = f_R \]

M. Francisquez

Kinetic Theory Working Group, Madrid 2018
We can check that relaxation of an initial state behaves as expected.

\[
f(t=0, x, v_x) = \begin{cases}
 n(x)/(2v_0(x)) & |v_x| < v_0(x) \\
 0 & |v_x| \geq v_0(x).
\end{cases}
\]

\[n(x) = 1 + 0.4 \cos(2\pi x) \quad v_0(x) = n(x)/\sqrt{3}\]

Use \(p = 2 \) and \(\nu = 0.01 \) to solve

\[
\frac{\partial f}{\partial t} = \frac{\partial}{\partial v} \nu(v - u) f + \frac{\partial^2}{\partial v^2} \nu v_{th}^2 f
\]
Can also check M_1 conservation, and in higher dimensions.

Consider a 2x2v distribution with a large bump in its tail.
Conservation in Boltzmann-Maxwell system is also preserved.

Consider a 2x2v distribution with a large bump in its tail:

1x1v test has initial Maxwellian with strong asymmetric momentum:

\[n(x, t = 0) = 1 + \exp \left[-\beta (x - x_m)^2 \right] \]
\[x_m = L_x/4 \]
\[\beta = \begin{cases}
0.75/d_e^2 & x < x_m \\
0.075/d_e^2 & x > x_m
\end{cases} \]
\[u(x, t = 0) = v_{th} \]
\[v_{th,e} = 0.1c \]
\[T_p/T_e = 1 \]
\[m_p/m_e = 1836 \]
Landau damping of a Langmuir wave

Set up a 1x1v plasma with a small perturbation in the electron density and electric field:

\[n_e(x) = 1 + 10^{-4} \cos\left(\frac{x}{2\lambda_D}\right) \quad n_p(x) = 1 \]

\[E_x(x) = -\frac{1}{\varepsilon_0} |e| 2 \times 10^{-4} \lambda_D \sin\left(\frac{x}{2\lambda_D}\right) \]

\[v_{th,e} = 0.1c \]
\[T_p/T_e = 1 \]
\[m_p/m_e = 1836 \]

Magnetic pumping heating in the solar wind1

VPIC 2D simulation
- electron-ion collisions only.
- Monte Carlo Coulomb collisions.
- $\omega_{pe} = \Omega_e$
- $m_i/m_e = 100$
- Drive current sheets.

Gkeyll 1x3v simulation
- e-e and ion-ion collisions only.
- Lenard-Bernstein operator.
- $\omega_{pe} = 0.1\Omega_e$
- Drive oscillating B-field.

M. Francisquez

Kinetic Theory Working Group, Madrid 2018
Summary

• A particle, momentum and energy conserving DG scheme is possible for the LBO.

• Conservation requires the solution to a weak system of equations to obtain \mathbf{u} and v_{th}^2.

• Our scheme uses a recovery polynomial to evaluate derivatives at cell boundaries.

• LBO equation evolves f to the respective Maxwellian while conserving M_0, $M_{1,i}$ and M_2.

• Vlasov terms retain particle and energy conservation.

• Begun exploring Lichko's magnetic pumping heating mechanism. In our 1x3v model heating is much weaker and does not follow the same trend with ν.

M. Francisquez

Kinetic Theory Working Group, Madrid 2018