Comparison of collision operators and particle trajectories in stellarators using the SFINCS code

Matt Landreman, (University of Maryland)
Håkan Smith, Per Helander, Yuriy Turkin (IPP Greifswald),
Albert Mollén (Chalmers University)
Motivation

- Neoclassical physics is very important in stellarators:
 - At low v_*, neoclassical radial transport exceeds turbulent transport.
 - W7-X is sensitive to j_{bs}: divertor requires $q = 1$ at LCFS.

However,

- Design & modelling of W7-X has used an ad-hoc kinetic equation, & simplistic collision operator.
- Generally, coupling in the energy coordinate has been neglected to reduce kinetic equation from 4D \rightarrow 3D.

With modern computing power, we can now solve the 4D equation.
SFINCS (Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver)

- Solves time-independent linear drift-kinetic equations for $f_s(\theta, \zeta, v_\perp, v_\parallel)$.

- Several options for terms in the kinetic equation involving E_r – “effective particle trajectories.”

- Several options for collision operator, including full linearized Fokker-Planck (so no “momentum correction” is required.)

- Continuum discretization, with mix of finite-difference, spectral, and pseudospectral methods.

- General nested flux surface geometry allowed, with interface to equilibrium data.

- Arbitrary number of species.

- Uses preconditioned GMRES solver (via PETSc library).

- Closely related to the tokamak code PERFECT for finite-orbit-width neoclassical calculations in tokamak pedestals: $f_s(\theta, \psi, v_\perp, v_\parallel)$.
 \textit{PPCF 56, 045005 (2014).}
1. “DKES trajectories” (Incompressible ExB drift, van Rij & Hirshman (1989)):

\[
\left(v_b + \frac{c}{B^2} \frac{d\Phi}{d\psi} B \times \nabla \psi \right) \cdot \nabla f_1 - \frac{(1 - \xi^2)}{2B} \nu (\nabla B) \frac{\partial f_1}{\partial \xi} - C \{ f_1 \} = -v_m \cdot \nabla \psi \frac{\partial f_m}{\partial \psi}
\]

\[
\xi = \frac{v_\parallel}{v}
\]
Several choices are available for the E_r terms

1. “DKES trajectories” (Incompressible ExB drift, van Rij & Hirshman (1989)):

$$
\left(v_\parallel b + \frac{c}{\langle B^2 \rangle} \frac{d\Phi}{d\psi} B \times \nabla \psi \right) \cdot \nabla f_1 - \frac{1 - \xi^2}{2B} \nu \left(\nabla_\parallel B \right) \frac{\partial f_1}{\partial \xi} - C \{ f_1 \} = -v_m \cdot \nabla \psi \frac{\partial f_m}{\partial \psi}
$$

$$\xi = \nu_\parallel / \nu$$

2. “Partial trajectories” (Correct ExB drift):

$$
\left(v_\parallel b + \frac{c}{B^2} \frac{d\Phi}{d\psi} B \times \nabla \psi \right) \cdot \nabla f_1 - \frac{1 - \xi^2}{2B} \nu \left(\nabla_\parallel B \right) \frac{\partial f_1}{\partial \xi} - C \{ f_1 \} = -v_m \cdot \nabla \psi \frac{\partial f_m}{\partial \psi}
$$
Several choices are available for the E_r terms

1. "DKES trajectories" (Incompressible ExB drift, van Rij & Hirshman (1989)):

$$
\left(v_{||} \mathbf{b} + \frac{c}{\langle B^2 \rangle} \frac{d\Phi}{d\psi} \mathbf{B} \times \nabla \psi \right) \cdot \nabla f_1 - \left(1 - \xi^2 \right) \nu \left(\nabla_{||} B \right) \frac{\partial f_1}{\partial \xi} - C \left\{ f_1 \right\} = - \mathbf{v}_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}
$$

$$\xi = \frac{v_{||}}{v}$$

2. "Partial trajectories" (Correct ExB drift):

$$
\left(v_{||} \mathbf{b} + \frac{c}{\langle B^2 \rangle} \frac{d\Phi}{d\psi} \mathbf{B} \times \nabla \psi \right) \cdot \nabla f_1 - \left(1 - \xi^2 \right) \nu \left(\nabla_{||} B \right) \frac{\partial f_1}{\partial \xi} - C \left\{ f_1 \right\} = - \mathbf{v}_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}
$$

3. "Full trajectories" (Including other terms required to conserve μ & correct viscous force):

$$
\left(v_{||} \mathbf{b} + \frac{c}{\langle B^2 \rangle} \frac{d\Phi}{d\psi} \mathbf{B} \times \nabla \psi \right) \cdot \nabla f_1 + \left[- \left(1 - \xi^2 \right) \nu \left(\nabla_{||} B \right) + \frac{c \xi \left(1 - \xi^2 \right)}{2 B^3} \frac{d\Phi}{d\psi} \mathbf{B} \times \nabla \psi \cdot \nabla B \right] \frac{\partial f_1}{\partial \xi}

+ \frac{c v}{2 B^3} \left(1 + \xi^2 \right) \frac{d\Phi}{d\psi} \left(\mathbf{B} \times \nabla \psi \cdot \nabla B \right) \frac{\partial f_1}{\partial \psi} - C \left\{ f_1 \right\} = - \mathbf{v}_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}
$$
Several choices are available for the E_r terms

1. “DKES trajectories” (Incompressible ExB drift, van Rij & Hirshman (1989)):

$$
\left(\nu b + \frac{c}{B^2} \frac{d \Phi}{d \psi} B \times \nabla \psi \right) \cdot \nabla f_1 - \frac{(1 - \xi^2)}{2B} \nu \left(\nabla_{B1} \right) \frac{\partial f_1}{\partial \xi} - C \{ f_1 \} = -v_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}
$$

$$
\xi = \nu_{L} / \nu
$$

2. “Partial trajectories” (Correct ExB drift):

$$
\left(\nu b + \frac{c}{B^2} \frac{d \Phi}{d \psi} B \times \nabla \psi \right) \cdot \nabla f_1 - \frac{(1 - \xi^2)}{2B} \nu \left(\nabla_{B1} \right) \frac{\partial f_1}{\partial \xi} - C \{ f_1 \} = -v_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}
$$

3. “Full trajectories” (Including other terms required to conserve μ & correct viscous force):

$$
\left(\nu b + \frac{c}{B^2} \frac{d \Phi}{d \psi} B \times \nabla \psi \right) \cdot \nabla f_1 + \left[-\frac{(1 - \xi^2)}{2B} \nu \left(\nabla_{B1} \right) + \frac{c \xi (1 - \xi^2)}{2B^3} \frac{d \Phi}{d \psi} B \times \nabla \psi \cdot \nabla B \frac{\partial f_1}{\partial \xi} \right]
$$

$$
+ \frac{c \nu}{2B^3} (1 + \xi^2) \frac{d \Phi}{d \psi} (B \times \nabla \psi \cdot \nabla B) \frac{\partial f_1}{\partial \nu} - C \{ f_1 \} = -v_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}
$$

These models are ordered from least to most accurate, in a sense, but care is required…
In the partial and full trajectory models, unphysical constraints will be imposed on \(f \) unless you are careful.

Example: partial trajectories:

\[
\left(v_{||} b + \frac{c}{B^2} \frac{d\Phi}{d\psi} \mathbf{B} \times \nabla \psi \right) \cdot \nabla f - \frac{1 - \xi^2}{2B} \nu \left(\nabla_B \right) \frac{\partial f_i}{\partial \xi} - C \{ f_i \} = -v_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}
\]

Consider the \(\left\langle \int d^3\nu \ldots \right\rangle \) moment:

\[
\frac{d\Phi}{d\psi} \left\langle \int d^3\nu f_i \mathbf{B} \times \nabla \psi \cdot \nabla \frac{1}{B^2} \right\rangle = 0
\]
In the partial and full trajectory models, unphysical constraints will be imposed on \(f \) unless you are careful.

Example: partial trajectories:

\[
\left(v_{\parallel} \mathbf{b} + \frac{c}{B^2} \frac{d\Phi}{d\psi} \mathbf{B} \times \nabla \psi \right) \cdot \nabla f_1 - \frac{1 - \xi^2}{2B} \nu \left(\nabla B \right) \frac{\partial f_1}{\partial \xi} - C\{f_1\} = -\mathbf{v}_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}
\]

Consider the \(\left\langle \int d^3\nu (\ldots) \right\rangle \) moment:

\[
\frac{d\Phi}{d\psi} \left\langle \int d^3\nu f_1 \mathbf{B} \times \nabla \psi \cdot \nabla \frac{1}{B^2} \right\rangle = 0
\]

If \(\frac{d\Phi}{d\psi} = 0 \),

\[0 = 0. \text{ No problem.} \]
In the partial and full trajectory models, unphysical constraints will be imposed on f unless you are careful.

Example: partial trajectories:

$$\left(v \parallel b + \frac{c}{B^2} \frac{d\Phi}{d\psi} B \times \nabla \psi\right) \cdot \nabla f_1 - \left(1 - \frac{\xi^2}{2B}\right) v \left(\nabla \parallel B\right) \frac{\partial f_1}{\partial \xi} - C\{f_1\} = -v_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}$$

Consider the $\left\langle \int d^3\nu (\ldots) \right\rangle$ moment:

$$\frac{d\Phi}{d\psi} \left\langle \int d^3\nu f_1 \ B \times \nabla \psi \cdot \nabla \frac{1}{B^2} \right\rangle = 0$$

If $\frac{d\Phi}{d\psi} = 0$, $0 = 0$. No problem.

If $\frac{d\Phi}{d\psi} \neq 0$, $\left\langle \int d^3\nu f_1 \ B \times \nabla \psi \cdot \nabla \frac{1}{B^2} \right\rangle = 0$

Unphysical constraint on f_1.

Solution for $\frac{d\Phi}{d\psi} = 0$ is very different from solution for $\frac{d\Phi}{d\psi} = \epsilon$.
In the partial and full trajectory models, unphysical constraints will be imposed on f unless you are careful.

Example: partial trajectories:

\[
\left(v \mathbf{b} + \frac{c}{B^2} \frac{d\Phi}{d\psi} \mathbf{B} \times \nabla \psi \right) \cdot \nabla f_1 - \left(\frac{1 - \xi^2}{2B} \right) v \left(\nabla \cdot \mathbf{B} \right) \frac{\partial f_1}{\partial \xi} - C\{f_1\} = -\mathbf{v}_m \cdot \nabla \psi \frac{\partial f_M}{\partial \psi}
\]

Consider the $\left\langle \int d^3\nu \left(\ldots \right) \right\rangle$ moment:

\[
\frac{d\Phi}{d\psi} \left\langle \int d^3\nu f_1 \mathbf{B} \times \nabla \psi \cdot \nabla \frac{1}{B^2} \right\rangle = 0
\]

If $\frac{d\Phi}{d\psi} = 0$, $0 = 0$. No problem.

If $\frac{d\Phi}{d\psi} \neq 0$, $\left\langle \int d^3\nu f_1 \mathbf{B} \times \nabla \psi \cdot \nabla \frac{1}{B^2} \right\rangle = 0$

Unphysical constraint on f_1.

Solution for $\frac{d\Phi}{d\psi} = 0$ is very different from solution for $\frac{d\Phi}{d\psi} = \varepsilon$. Similar problem for the $\left\langle \int d^3\nu \nu^2 \left(\ldots \right) \right\rangle$ moment, & for full trajectories.
The partial and full trajectory models become well-behaved if you include sources.

\[
\left(v_{\parallel b} + v_E \right) \cdot \nabla f_1 + \dot{\xi} \frac{\partial f_1}{\partial \xi} - C_\ell \{ f_1 \} - S_p f_M \left(\frac{mv^2}{2T} - \frac{5}{2} \right) - S_h f_M \left(\frac{mv^2}{2T} - \frac{3}{2} \right) = -v_d \cdot \nabla f_M
\]
The partial and full trajectory models become well-behaved if you include sources.

\[
\left(\nu_{\parallel} b + \nu_E \right) \cdot \nabla f_1 + \dot{\xi} \frac{\partial f_1}{\partial \xi} - C_\ell \{ f_1 \} - S_p f_M \left(\frac{mv^2}{2T} - \frac{5}{2} \right) - S_h f_M \left(\frac{mv^2}{2T} - \frac{3}{2} \right) = -\mathbf{v}_d \cdot \nabla f_M
\]

2 extra unknowns \((S_p \text{ and } S_h)\) require 2 extra equations.

Kinetic equation \{ \}

\[
\left\langle \int d^3\nu f_1 \right\rangle_\nu = 0 \quad \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} f_1 \\ S_p \\ S_h \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

Vector of unknowns

\[
\left\langle \int d^3\nu f_1 \nu^2 \right\rangle_\nu = 0 \quad \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} f_1 \\ S_p \\ S_h \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
The partial and full trajectory models become well-behaved if you include sources.

\[
\left(\mathbf{v}_b + \mathbf{v}_E \right) \cdot \nabla f_1 + \dot{\xi} \frac{\partial f_1}{\partial \xi} - C_\ell \{ f_1 \} - S_p f_M \left(\frac{mv^2}{2T} - \frac{5}{2} \right) - S_h f_M \left(\frac{mv^2}{2T} - \frac{3}{2} \right) = -\mathbf{v}_d \cdot \nabla f_M
\]

2 extra unknowns \((S_p \text{ and } S_h)\) require 2 extra equations.

<table>
<thead>
<tr>
<th>Kinetic equation</th>
<th>(\left\langle \int d^3 \nu f_1 \right\rangle)</th>
<th>(\begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix})</th>
<th>(\begin{bmatrix} f_1 \ S_p \ S_h \end{bmatrix})</th>
<th>(-\mathbf{v}_d \cdot \nabla f_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle \int d^3 \nu f_1 \rangle \rangle \psi) = 0</td>
<td>(\begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix})</td>
<td>(S_p = 0)</td>
<td>(S_h = 0)</td>
<td></td>
</tr>
<tr>
<td>(\langle \int d^3 \nu f_1 \nu^2 \rangle \rangle \psi) = 0</td>
<td>(\begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix})</td>
<td>(S_p = 0)</td>
<td>(S_h = 0)</td>
<td></td>
</tr>
</tbody>
</table>

DKES trajectories: \(S_p = 0, \quad S_h = 0. \)

Partial trajectories: \(S_p \neq 0, \quad S_h \neq 0. \)

Full trajectories: \(S_p = 0, \quad S_h
eq 0 \) except at the ambipolar \(E_r. \)
The partial and full trajectory models become well-behaved if you include sources.

\[(\nu_{\parallel} \mathbf{b} + \mathbf{v}_E) \cdot \nabla f_1 + \dot{\xi} \frac{\partial f_1}{\partial \xi} - C_\ell \{ f_1 \} - S_p f_M \left(\frac{mv^2}{2T} - \frac{5}{2} \right) - S_h f_M \left(\frac{mv^2}{2T} - \frac{3}{2} \right) = -\mathbf{v}_d \cdot \nabla f_M \]

2 extra unknowns \((S_p\) and \(S_h\)) require 2 extra equations.

• Only the full trajectory model preserves intrinsic ambipolarity in quasisymmetric \(B\) fields.

• Only the full trajectory model gives the correct parallel viscous force associated with \(E_r\)-driven gyroviscosity:

\[\bar{\Pi}_E = (b \mathbf{v}_E + v_E \mathbf{b}) mnV_{\parallel}, \quad \mathbf{b} \cdot (\nabla \cdot \bar{\Pi}_E) = cmB \frac{d\Phi}{d\psi} \mathbf{B} \times \nabla \psi \cdot \nabla \left(\frac{nV_{\parallel}}{B^3} \right)\]

DKES trajectories: \(S_p = 0, \quad S_h = 0\).

Partial trajectories: \(S_p \neq 0, \quad S_h \neq 0\).

Full trajectories: \(S_p = 0, \quad S_h \neq 0\) except at the ambipolar \(E_r\).
SFINCS can use the full linearized Fokker-Planck collision operator.

\[C_i \{ f_1 \} = \left\{ \begin{array}{l} \text{pitch-angle \& energy scattering} \\ \text{(test particle part)} \end{array} \right\} + \nu_{ii} 3e^{-\nu^2/\nu_{th,i}^2} \left[f_1 - \frac{H}{2\pi \nu_{th,i}^2} + \frac{\nu^2}{2\pi \nu_{th,i}^4} \frac{\partial^2 G}{\partial \nu^2} \right] \left\{ \begin{array}{l} \text{field particle part} \end{array} \right\} \]

\[\nabla_\nu^2 H + 4\pi f_1 = 0 \]

\[\nabla_\nu^2 G - 2H = 0 \]
SFINCS can use the full linearized Fokker-Planck collision operator.

\[C_i \{ f_1 \} = \begin{cases} \text{pitch-angle & energy scattering} \\ \text{test particle part} \end{cases} + \nu_{ii} 3e^{-\nu^2/\nu_{th,i}^2} \begin{bmatrix} f_1 - \frac{H}{2\pi \nu_{th,i}^2} + \frac{\nu^2}{2\pi \nu_{th,i}^4} \frac{\partial^2 G}{\partial \nu^2} \end{bmatrix} \]

Kinetic equation:

\[\nabla_v^2 H + 4\pi f_1 = 0 \]

\[\nabla_v^2 G - 2H = 0 \]

Vector of unknowns

Similar to independent work in Lyons et al, *PoP* 19, 082515 (2012)
SFINCS allows comparison between collision operators

\[v' = v_{ii} R / v_{th,i}, \quad \text{W7-X geometry,} \quad E_r = 0. \]
When $E_*=E_r/E_r^{res}$ is < 0.3, the 3 models are nearly identical; otherwise differences can be significant.

\[\nu_{ii} R / \nu_{th,i} = 0.01, \quad E_r^{res} = B \nu_{th,i} tr / R \]
Example: W7-X edge.

Example: W7-X edge. Trajectory model has little impact on ambipolar E_r, modest effect on j_{bs}.
Example: W7-X edge. Trajectory model has little impact on ambipolar E_r, modest effect on j_{bs}.

$E_r^{res} = B\nu_{th,i}tr / R = 100\text{kV/m}$
For expected W7X profiles, trajectory model and collision operator have little effect on E_r or radial fluxes.
For expected W7X profiles, trajectory model and collision operator have modest effect on flows and j_{bs}.

Ion contribution to bootstrap current

Total bootstrap current

- DKES calculations by Turkin, with momentum correction
- DKES calculations by Turkin, without momentum correction
- SFINCS: Fokker–Planck, full trajectories
- SFINCS: Fokker–Planck, monoenergetic trajectories
- SFINCS: Pitch–angle scattering, full trajectories
- SFINCS: Pitch–angle scattering, monoenergetic trajectories
Summary

• Our new code SFINCS allows a comparison of several variants of the drift-kinetic equation, differing in the E_r terms.

 – The trick of including particle & heat sources allows for steady-state solution of a wide variety of kinetic equations, even if conservation is imperfect.

 – Below $\sim 1/3$ of the E_r resonance, the variants give nearly identical results. This is probably the case for W7-X.

 – For larger E_r/E_r^{res}, there can be substantial differences.

 – The “full trajectory” model is probably the best of the 3 models considered here, but radial coupling could also be important.
Future work & opportunities for collaboration

- Use existing version of SFINCS to study impurity transport. Fokker-Planck collision operator may make a difference.

- Clarify orderings. Is there a superior version of the kinetic equation?

- Include poloidal & toroidal magnetic drifts.

- Applications for f_1, $n_1(\theta, \zeta)$, adiabatic $\Phi_1(\theta, \zeta)$?

- Nonlinear $\Phi_1(\theta, \zeta)$ terms (García-Regaña et al, PPCF (2013))

- Code, documentation, & examples online: www.github.com/landreman/sfincs